

Une alternative prometteuse aux antimousses

Dans le cadre des Journées acéricoles 2023

organisées par le MAPAQ

Projet réalisé en partenariat avec les conseillers acéricoles du Québec

Collaboration:

- Centre ACER: Nathalie Martin, Fadi Ali, Carmen Charron, Jessica Houde, Stéphane Corriveau
- Conseillers acéricoles du MAPAQ (Raymond Bernier)
- Financé par le Centre ACER et le MAPAQ
- Dans le cadre programme de recherche sur les antimousses 2017-2021 du Centre ACER

Au sommaire

- Le Centre ACER
- Mise en contexte: formation et contrôle de la mousse
- Mise au point d'une méthode alternative aux antimousses
- Perspectives

Le Centre ACER

R&D

- > Propriétés
- > Production
- > Procédés

Analyses

- > Résidus chimiques
- Qualité du sirop

Transfert

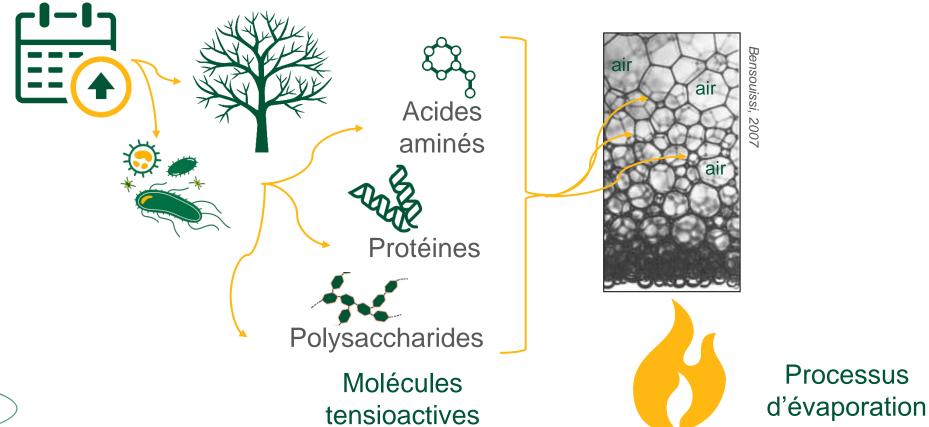
- > Formations
- > Manuels
- > Publications

L'industrie

- Étude des besoins
- > Solutions appropriés

Mise en contexte

- Le gonflement ou moussage du concentré dans l'évaporateur est un phénomène souvent rencontré en production
- Parfois inévitable, il est la cause de bien des désagréments, d'accidents et de pertes économiques



Formation de mousse lors de l'évaporation – Causes

- Concentration et la composition de la sève
- Intensité de chaleur

Pourquoi contrôler la mousse ?

- Faire un produit de qualité
- Maintien de l'efficacité de l'évaporation
- Éviter les débordements
- Assurer la sécurité des opérateurs

Le contrôle la mousse devient parfois inévitable avec la chaleur intense générée par les évaporateurs

Bonnes pratiques pour diminuer le moussage

 Contrôle de la contamination et de la dégradation de la sève et du concentré de sève

Contrôle des paramètres d'évaporation

Bonnes pratiques – agents antimoussants

Malgré toutes ces précautions, des épisodes de moussage excessif peuvent survenir.

Agents de contrôle de la mousse

- Facilité d'emploi
- Rapidité d'action
- Faible coût

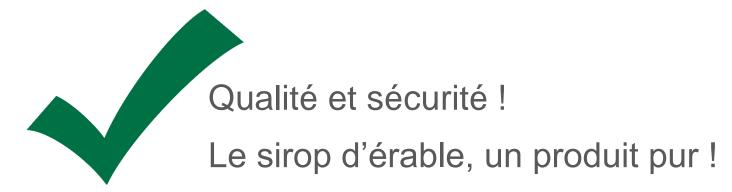
Agents de contrôle de la mousse - Réglementation

L'Agence Canadienne d'Inspection des aliments (ACIA) tolère leur utilisation comme agent technologique, sans déclaration obligatoire, à ces conditions :

- Usage alimentaire
- Non allergènes
- Utilisation limitées aux fins prévues (infime quantité et selon les bonnes pratiques)

Trop grande quantité = 100% PUR

Contraintes réglementaires

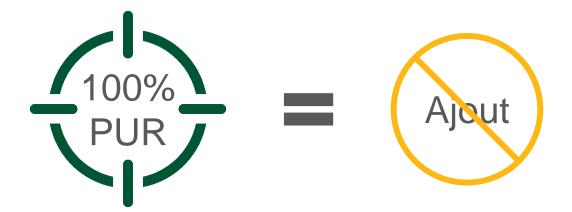

Additif aire

Agents de contrôle de la mousse – Bonnes pratiques

- Choisir un produit ayant une bonne capacité antimoussante
- Effectuer un contrôle de la qualité avant utilisation
- Ajouter en quantité minimale et au besoin seulement
- Vérifier la compatibilité de l'antimousse avec la production biologique

Agents de contrôle de la mousse - Risques

- Mauvaise utilisation ou surutilisation
 - -Résidus dans le sirop d'érable


Production biologique

- -Altération de la saveur (VR4, perte de la valeur commerciale)
- Potentiel allergène
- Résidus dans les casseroles

Agents de contrôle de la mousse – Alternatives ?

- Moyens mécaniques (projection d'un liquide ou d'un jet d'air, dispositifs rotatifs)
- Moyens physiques (traitements électriques ou thermiques, ultrasons)

Projet du Centre ACER - Méthode alternative

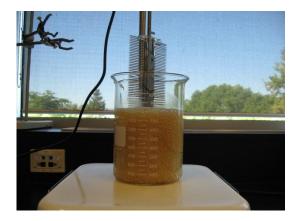
Évaluer le potentiel d'une méthode alternative :

• Développer un prototype adapté

• Évaluer son efficacité en comparant à celle des antimousses communément utilisés

Conditions simulant la formation de mousse en production :

- Sèves de fin de saison concentrées par chauffage en grand volume à faible intensité jusqu'à 45°Brix
- Chauffage sur plaque chauffante jusqu'à ébullition pour provoquer le moussage



Jet d'air comprimé en surface

Vaporisation d'eau en surface

 Interventions très fréquentes

- Contre-productif (ajout d'eau)
- Diminue l'efficacité de l'évaporation

Jet d'air comprimé en surface

 Maintien du niveau sous le jet

- Possible oxydation des composés
- Diminue l'efficacité de l'évaporation

Dispositif mécanique rotatif

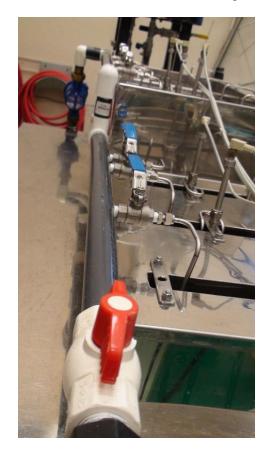
- N'empêche pas, mais ralentit la formation de mousse
- Mousse plus dense

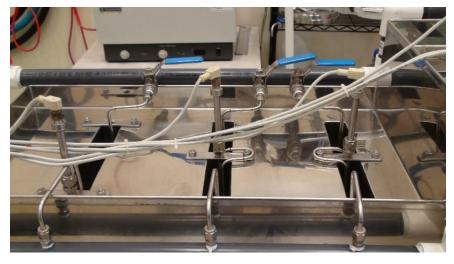
Méthode alternative – Les débuts d'une grande histoire

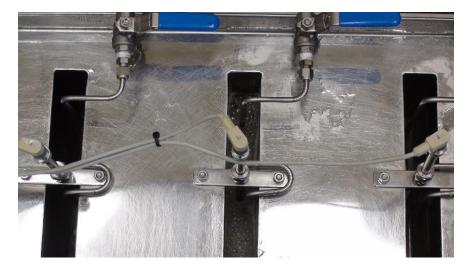
Observations d'un producteur

Partage par un conseiller

Nouvelle méthode élaborée par le Centre ACER


- Efficace
- Sans intervention
- Maintien du niveau à la hauteur cible
- Diminution d'efficacité de l'évaporation
- Refroidissement et condensation

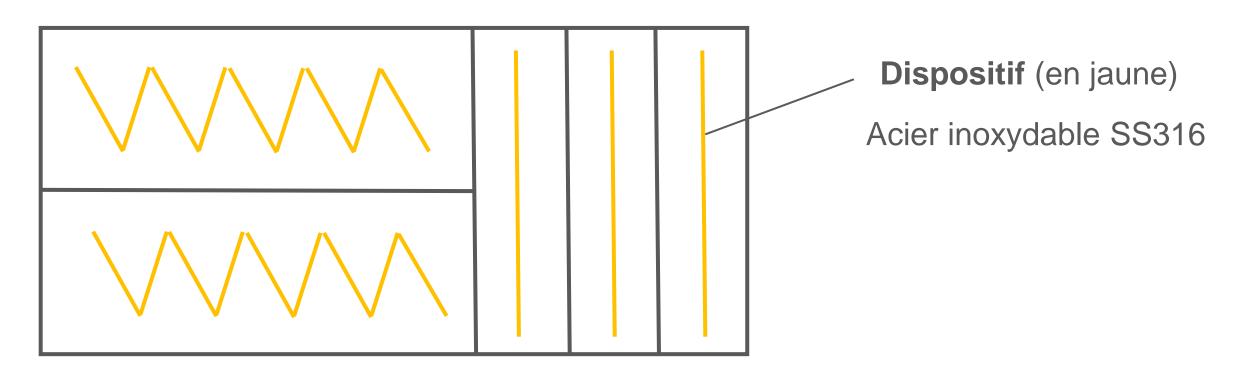




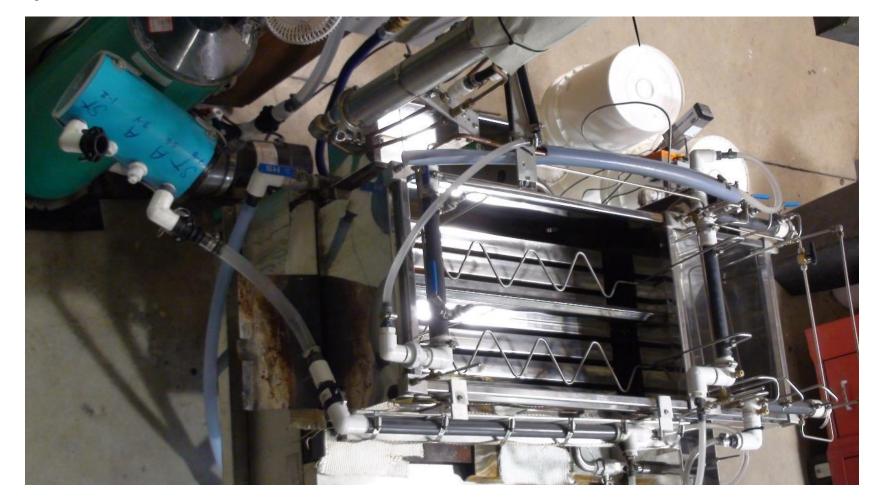
Méthode alternative – Essais pilote

Mini-évaporateur électrique pilote

- Potentiel intéressant
- Rapport surface de refroidissement vs surface d'évaporation inadéquat
- Optimisation nécessaire



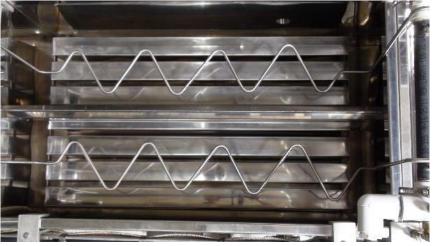
Évaporateur semi-industriel

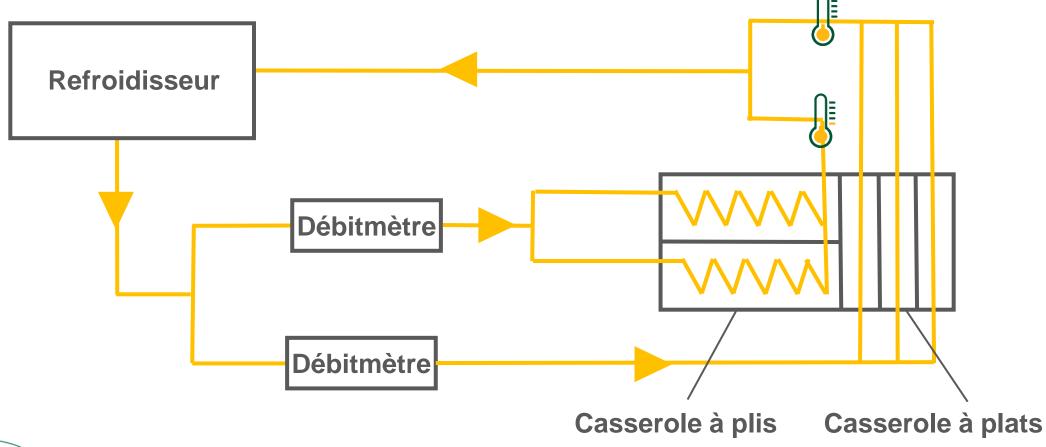


Casserole à plis

Casserole à plats







Conditions expérimentales du dispositif:

		PI	is	Plats			
Hauteur du dispositif par rapport au liquide (po)	0,5	1	2	3	0,5	1	3

Conditions expérimentales du dispositif:

		Plats					
Hauteur du dispositif par rapport au liquide (po)	0,5 1 2 3		0,5	1		3	
Débit de circulation (L/h)	16	168 480		135			384

Conditions expérimentales du dispositif:

	Plis					Plats			
Hauteur du dispositif par rapport au liquide (po)	0,5 1 2 3		0,5	,	l	3			
Débit de circulation (L/h)	168 480			135			384		
Température du liquide dans le dispositif (°C)	4 12		2		20)			

Conditions expérimentales du concentré et de l'évaporateur:

- Concentrés à 15 °Brix de fin de saison
- Préchauffage du concentré à 70 °C
- Hauteur du liquide dans les casseroles
 - Plis: 2 po
 - Plats: 2 po
- Chauffage de l'évaporateur pour favoriser le moussage

Prototype non fonctionnel

Prototype en fonction

Résultats:

		Pli	is	Plats			
Hauteur du dispositif (po)	0,5	1	2	3	0,5	1	3

Résultats:

		PI	Plats					
Hauteur du dispositif (po)	0,5	1	2	3	0,5			3
Débit de circulation (L/h)	168		480		135			384

Résultats:

	Plis						Pla	ats	
Hauteur du dispositif (po)	0,5	1	2		3	0,5	(3
Débit de circulation (L/h)	168		480		135			384	
Température du liquide dans le dispositif (°C)	4		12		12			20	

Étude et résultats exploratoires

Paramètre	Antimousse manuel (n=1)	Prototype (n=7)
Temps de production de sirop (3 premières coulées, h)	1,4	1,5
Taux global d'évaporation (gal/h)	5,4	5,1
Quantité de râche humide (g/L sirop)	101,0	79,0
Couleur du sirop (% transmittance)	40,2	36,1

Méthode alternative – Perspectives d'avenir

- Validation des observations
- Mise à l'échelle industrielle du procédé
- Tests en conditions réelles de production
- Évaluation des coûts / bénéfices
- Éventuel support financier
- Rendre la technologie disponible à l'échelle commerciale

Sur les chemins de l'innovation

Conclusion

- Potentiel de développement intéressant pour ce prototype
- Alternative aux agents antimoussants actuel
- Pureté du sirop d'érable assurée (sans ajout)
- Pas de défaut de saveur lié aux antimousses
- Aucun risque lié aux produits allergènes
- Système simple et facile à utiliser
- Dispositif résistant aux conditions du milieu
- Convient à la production régulière et biologique

Merci de votre attention! Des questions?

